Compositional Control in 2D Perovskites with Alternating Cations in the Interlayer Space for Photovoltaics with Efficiency over 18

Adv Mater. 2019 Nov;31(44):e1903848. doi: 10.1002/adma.201903848. Epub 2019 Sep 15.

Abstract

2D perovskites stabilized by alternating cations in the interlayer space (ACI) represent a very new entry as highly efficient semiconductors for solar cells approaching 15% power conversion efficiency (PCE). However, further improvements will require understanding of the nature of the films, e.g., the thickness distribution and charge-transfer characteristics of ACI quantum wells (QWs), which are currently unknown. Here, efficient control of the film quality of ACI 2D perovskite (GA)(MA)n Pbn I3 n +1 (〈n〉 = 3) QWs via incorporation of methylammonium chloride as an additive is demonstrated. The morphological and optoelectronic characterizations unambiguously demonstrate that the additive enables a larger grain size, a smoother surface, and a gradient distribution of QW thickness, which lead to enhanced photocurrent transport/extraction through efficient charge transfer between low-n and high-n QWs and suppressed nonradiative charge recombination. Therefore, the additive-treated ACI perovskite film delivers a champion PCE of 18.48%, far higher than the pristine one (15.79%) due to significant improvements in open-circuit voltage and fill factor. This PCE also stands as the highest value for all reported 2D perovskite solar cells based on the ACI, Ruddlesden-Popper, and Dion-Jacobson families. These findings establish the fundamental guidelines for the compositional control of 2D perovskites for efficient photovoltaics.

Keywords: ACI perovskites; charge transport; quantum wells; solar cells.