Background: Pavlovian-to-instrumental transfer (PIT) describes the influence of conditioned stimuli on instrumental behaviors and is discussed as a key process underlying substance abuse. Here, we tested whether neural responses during alcohol-related PIT predict future relapse in alcohol-dependent patients and future drinking behavior in adolescents.
Methods: Recently detoxified alcohol-dependent patients (n = 52) and young adults without dependence (n = 136) underwent functional magnetic resonance imaging during an alcohol-related PIT paradigm, and their drinking behavior was assessed in a 12-month follow-up. To predict future drinking behavior from PIT activation patterns, we used a multivoxel classification scheme based on linear support vector machines.
Results: When training and testing the classification scheme in patients, PIT activation patterns predicted future relapse with 71.2% accuracy. Feature selection revealed that classification was exclusively based on activation patterns in medial prefrontal cortex. To probe the generalizability of this functional magnetic resonance imaging-based prediction of future drinking behavior, we applied the support vector machine classifier that had been trained on patients to PIT functional magnetic resonance imaging data from adolescents. An analysis of cross-classification predictions revealed that those young social drinkers who were classified as abstainers showed a greater reduction in alcohol consumption at 12-month follow-up than those classified as relapsers (Δ = -24.4 ± 6.0 g vs. -5.7 ± 3.6 g; p = .019).
Conclusions: These results suggest that neural responses during PIT could constitute a generalized prognostic marker for future drinking behavior in established alcohol use disorder and in at-risk states.
Keywords: Alcohol dependence; Future drinking behavior; Multivoxel classification; Pavlovian-to-instrumental transfer; Relapse.
Copyright © 2019 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.