Stem cells offer great hope for the therapy of neurological disorders. Using a human artificial chromosome (HAC), we generated modified mesenchymal stem cells (MSCs), termed HAC-MSC that express 3 growth factors and 2 marker proteins including luciferase, and previously demonstrated that intrathecal administration of HAC-MSCs extended the lifespan in a mouse model of amyotrophic lateral sclerosis (ALS). However, donor cells disappeared rapidly after transplantation. To overcome this poor survival, we transplanted the HAC-MSCs as a sheet structure which retained the extracellular matrix. We investigated, here, whether cell sheet showed a longer survival than intrathecal administration. Also, the therapeutic effects on ALS model mice were examined. In vivo imaging showed that luciferase signals increased immediately after transplantation up to 7 days, and these signals were sustained for up to 14 days. In contrast, following intrathecal administration, signals were drastically decreased by day 3. Moreover, cell sheet transplantation successfully prolonged the survival of donor HAC-MSCs. Cell sheet transplantation increased the level of p-Akt at the graft area. Pathologically, none of the donor cells differentiated into neurons, astrocytes or microglial cells. When the cell sheet was transplanted into ALS model mice, there was an encouraging trend in the delayed onset of symptoms and increased lifespan. If each group was subdivided into rapid and slow progressors based on cut-off values for respective median survival, the survival of rapid progressors differed significantly between groups (treated vs. sham-operated = 145.4 ± 1.4 vs. 139.2 ± 1.2). The effect of HAC-MSC sheet transplantation still has a temporally narrow therapeutic window. Further improvement could be achieved by optimization of the transplantation conditions, e.g. co-transplantation of HAC-MSCs with endothelial progenitor cells.
Keywords: Amyotrophic lateral sclerosis; Cell transplantation; Human artificial chromosome; Luciferases; Mesenchymal stem cell; Tissue engineering.
Copyright © 2019 Elsevier B.V. All rights reserved.