Line-scanning confocal microendoscopy offers video-rate cellular imaging of scattering tissue with relatively simple hardware, but its axial response is inferior to that of point-scanning systems. Based on Fourier optics theory, we designed differential confocal apertures with a simple subtraction technique to improve the line-scanning sectioning performance. Taking advantage of digital slit apertures on a digital light projector and a CMOS rolling shutter, we demonstrate real-time optical sectioning performance comparable to point scanning in a dual-camera microendoscope (<$6,000). We validate the background rejection capability when imaging porcine columnar epithelium stained with fluorescent contrast agents with different uptake mechanisms and staining properties.