Plasma chemistry is widely used in diagnostic and research settings in sea turtles. However, plasma discolorations such as hemolysis are often not considered in data interpretation. The objectives of this study were to (1) evaluate the effects of moderate hemolysis on plasma electrolytes, minerals, and proteins using dry chemistry analysis (DCA) and protein electrophoresis from nesting leatherback sea turtles (Dermochelys coriacea) from Florida and to (2) establish blood analyte reference intervals. Twenty-six plasma samples with absence of hemolysis were selected and sub-divided into one non-hemolytic aliquot and an aliquot that was experimentally manipulated to mimic moderate hemolysis. Plasma samples were analyzed for hemoglobin using a handheld photometer; sodium, potassium, chloride, magnesium, calcium, phosphorus, and total protein using DCA; and protein electrophoresis. Packed cell volume and hemoglobin were measured in corresponding whole blood samples. Reference intervals were established. All analytes except calcium and pre-albumin were significantly higher and the calcium:phosphorus and albumin:globulin ratios were significantly lower in hemolytic plasma compared to non-hemolytic plasma. Alpha2-globulins and potassium were the analytes most impacted by hemolysis, averaging 3.3- and 2.0-fold higher in hemolyzed samples, respectively, indicating that (1) hemoglobin migrates into the alpha2-globulin region in this species and (2) notable intracellular potassium is released into plasma with hemolysis. Attempted conversion factors for compensation of hemolysis were considered inaccurate for 4 of 16 analytes due to non-significant regression lines. We also report that PCV provides an estimate of hemoglobin (g/L) using the formula: (2.59 × PCV) + 24.59. Given the spurious effects of hemolysis, the degree of this artifact should be reported with biochemistry data, and samples with moderate to severe hemolysis should be excluded from datasets when interpreting electrolyte, mineral, and protein results. This will ensure accurate data interpretation for individual turtles in rehabilitation or research settings and population-level data relevant to conservation-focused projects.