Hematopoietic Stem Cell Gene Therapy for Brain Metastases Using Myeloid Cell-Specific Gene Promoters

J Natl Cancer Inst. 2020 Jun 1;112(6):617-627. doi: 10.1093/jnci/djz181.

Abstract

Background: Brain metastases (BrM) develop in 20-40% of cancer patients and represent an unmet clinical need. Limited access of drugs into the brain because of the blood-brain barrier is at least partially responsible for therapeutic failure, necessitating improved drug delivery systems.

Methods: Green fluorescent protein (GFP)-transduced murine and nontransduced human hematopoietic stem cells (HSCs) were administered into mice (n = 10 and 3). The HSC progeny in mouse BrM and in patient-derived BrM tissue (n = 6) was characterized by flow cytometry and immunofluorescence. Promoters driving gene expression, specifically within the BrM-infiltrating HSC progeny, were identified through differential gene-expression analysis and subsequent validation of a series of promoter-green fluorescent protein-reporter constructs in mice (n = 5). One of the promoters was used to deliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to BrM in mice (n = 17/21 for TRAIL vs control group).

Results: HSC progeny (consisting mostly of macrophages) efficiently homed to macrometastases (mean [SD] = 37.6% [7.2%] of all infiltrating cells for murine HSC progeny; 27.9% mean [SD] = 27.9% [4.9%] of infiltrating CD45+ hematopoietic cells for human HSC progeny) and micrometastases in mice (19.3-53.3% of all macrophages for murine HSCs). Macrophages were also abundant in patient-derived BrM tissue (mean [SD] = 8.8% [7.8%]). Collectively, this provided a rationale to optimize the delivery of gene therapy to BrM within myeloid cells. MMP14 promoter emerged as the strongest promoter construct capable of limiting gene expression to BrM-infiltrating myeloid cells in mice. TRAIL delivered under MMP14 promoter statistically significantly prolonged survival in mice (mean [SD] = 19.0 [3.4] vs mean [SD] = 15.0 [2.0] days for TRAIL vs control group; two-sided P = .006), demonstrating therapeutic and translational potential of our approach.

Conclusions: Our study establishes HSC gene therapy using a myeloid cell-specific promoter as a new strategy to target BrM. This approach, with strong translational value, has potential to overcome the blood-brain barrier, target micrometastases, and control multifocal lesions.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Neoplasms / secondary*
  • Brain Neoplasms / therapy*
  • Female
  • Gene Transfer Techniques
  • Genetic Therapy / methods*
  • Green Fluorescent Proteins / administration & dosage
  • Green Fluorescent Proteins / biosynthesis
  • Green Fluorescent Proteins / genetics
  • Hematopoietic Stem Cell Transplantation / methods*
  • Hematopoietic Stem Cells / physiology*
  • Humans
  • Lentivirus / genetics
  • Matrix Metalloproteinase 14 / genetics
  • Mice
  • Mice, Inbred C57BL
  • Myeloid Cells / physiology*
  • Promoter Regions, Genetic
  • TNF-Related Apoptosis-Inducing Ligand / administration & dosage
  • TNF-Related Apoptosis-Inducing Ligand / biosynthesis
  • TNF-Related Apoptosis-Inducing Ligand / genetics

Substances

  • TNF-Related Apoptosis-Inducing Ligand
  • Green Fluorescent Proteins
  • Matrix Metalloproteinase 14