A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for Improving Clinical Workflow

J Am Coll Radiol. 2019 Sep;16(9 Pt B):1318-1328. doi: 10.1016/j.jacr.2019.06.004.

Abstract

Ultrasound is the most commonly used imaging modality in clinical practice because it is a nonionizing, low-cost, and portable point-of-care imaging tool that provides real-time images. Artificial intelligence (AI)-powered ultrasound is becoming more mature and getting closer to routine clinical applications in recent times because of an increased need for efficient and objective acquisition and evaluation of ultrasound images. Because ultrasound images involve operator-, patient-, and scanner-dependent variations, the adaptation of classical machine learning methods to clinical applications becomes challenging. With their self-learning ability, deep-learning (DL) methods are able to harness exponentially growing graphics processing unit computing power to identify abstract and complex imaging features. This has given rise to tremendous opportunities such as providing robust and generalizable AI models for improving image acquisition, real-time assessment of image quality, objective diagnosis and detection of diseases, and optimizing ultrasound clinical workflow. In this report, the authors review current DL approaches and research directions in rapidly advancing ultrasound technology and present their outlook on future directions and trends for DL techniques to further improve diagnosis, reduce health care cost, and optimize ultrasound clinical workflow.

Keywords: Artificial intelligence in ultrasound; breast lesion; deep learning in ultrasound; liver lesion; thyroid nodule.

Publication types

  • Review

MeSH terms

  • Algorithms
  • Artificial Intelligence
  • Breast Neoplasms / diagnostic imaging
  • Deep Learning / trends*
  • Female
  • Forecasting
  • Humans
  • Liver Neoplasms / diagnostic imaging
  • Male
  • Quality Improvement*
  • Surveys and Questionnaires
  • Thyroid Neoplasms / diagnostic imaging
  • Ultrasonography, Doppler, Color / methods*
  • United States
  • Workflow*