Background: The reduction of systemic immunosuppressive agents is essential for the expansion of vascularized composite allotransplantation (VCA) in a clinical setting. The purpose of this study is to compare human-induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs) with four other types of mesenchymal stem cells (human bone marrow-derived MSCs [BMMSCs], human adipose-derived MSCs [ADMSCs], rat BMMSCs, and rat ADMSCs) in vitro, and to investigate the in vivo immunomodulatory effect of iMSCs in a rat VCA model.
Materials and methods: One Brown Norway (BN) rat, 2 Lewis (LEW) rats, and 1 Wistar rat were used in the mixed lymphocyte reaction (MLR), and 9 BN rats and 3 LEW rats (for donors), and 24 LEW rats (for recipients) were used in the VCA model. The abovementioned five types of MSCs were imaged to examine their morphology and were also tested for suppressor function using a MLR. The 24 recipient LEW rats were divided randomly into four groups, and subjected to orthotopic hind limb transplantation. The three control groups were the Iso group, in which transplantation was performed on from three to six LEW rats without immunosuppressive treatment (n = 6); the FK group, in which transplantation was performed from BN rats to LEW rats and recipient rats were treated with tacrolimus alone (FK 506, 0.2 mg/kg, days 0-6 postoperatively, intraperitoneally) (n = 6); and the UT group, in which transplantation was performed from BN rats to LEW rats without any immunosuppressive treatment (n = 6). The experimental group was the iMSC group, in which transplantation was performed from BN rats to LEW rats and recipient rats were treated with tacrolimus (FK 506, 0.2 mg/kg, days 0-6 postoperatively, intraperitoneally) and injected with iMSCs (2 × 106 cells, day 7, intravenously) (n = 6). Hind limb survival was assessed by daily inspection of gross appearance until 50 days postoperatively. Histology of the skin and muscle biopsy were investigated on day 14 postoperatively. A time series of the plasma cytokine level (before transplantation, and at 10, 14, and 17 days after transplantation) was also analyzed.
Results: The size of adherent and trypsinized iMSCs was 67.5 ± 8.7 and 9.5 ± 1.1 μm, respectively, which was the smallest among the five types of MSCs (p < .01). The absorbance in MLR was significantly smaller with rat ADMSCs (p = .0001), human iMSCs (p = .0006), rat BMMSCs (p = .0014), human ADMSCs (p = .0039), and human BMMSCs (p = .1191) compared to without MSCs. In vivo, iMSC treatment prolonged hind limb survival up to 12.7 days in macroscopic appearance, which is significantly longer than that of the FK group (p < .01). Histology of the skin and muscle biopsy revealed that mononuclear cell infiltration was significantly reduced by iMSC injection (p < .01). iMSC treatment also affected proinflammatory cytokines (interferon-gamma (IFNγ) and tumor necrosis factor α (TNFα)) and the anti-inflammatory cytokine (interleukin-10 (IL-10)) of the recipient plasma. The IFNγ levels at Δ14 and the TNFα levels at Δ14 and Δ17 of the iMSC group were significantly lower than those of the FK group (p = .0226, .0004, and .004, respectively). The IL-10 levels at Δ10 and Δ14 of the iMSC group were significantly higher than those of the FK group (p = .0013 and .0374, respectively).
Conclusions: iMSCs induce T cell hyporesponsiveness to prolong hind limb survival in a rat VCA model. This immunomodulatory property against acute rejection could provide one of the promising strategies capable of enabling the toxicities of immunosuppressants to be avoided in clinical settings.
© 2019 Wiley Periodicals, Inc.