Cutaneous squamous cell carcinomas (SCCs) and basal cell carcinomas (BCCs) have different clinical behaviors, despite both being keratinocyte carcinomas mainly caused by ultraviolet radiation. Whether these distinct features are associated with tumor-associated macrophages (TAMs) is largely unknown. The main goal of this study was to conduct a comprehensive analysis of density and polarization states of TAMs in SCCs versus BCCs. The role of lactic acid in TAM polarization in SCC versus BCC was examined. We found that SCCs have a higher density of CD68 + TAMs compared to BCCs. TAMs in SCCs express higher levels of TAM-associated markers (arginase-1, MMP9, CD40 and CD127) than those in BCCs. Interestingly, differential expression of TAM-associated markers between SCCs and BCCs was reproduced in human monocytic THP-1 cells stimulated with SCC- or BCC-conditioned media. Analysis of soluble factor(s) in these tumors further revealed that SCCs have a significantly higher concentration of lactic acid than BCCs, and lactic acid was sufficient to upregulate TAM markers. Our results demonstrate that TAMs in SCCs versus BCCs differ in density and polarization states, which can be determined by soluble factors including tumor-derived lactic acid. These differences in TAMs may contribute to the distinct clinical behaviors of SCCs versus BCCs. This work was supported by grants from the National Institutes of Health and the Doris Duke Charitable Foundation.
Research in context: Few studies have studied tumor-associated macrophages in the context of SCC versus BCC. It has been demonstrated that macrophages mobilize to the epidermis after being exposed to ultraviolet-B radiation and produce interleukin-10 (IL-10). It has also been shown that the production of IL-10 results in the evasion of T cell-mediated immunity in BCCs and SCCs. However, the relationship between TAMs and the clinical behaviors of SCCs and BCCs remains largely unclear. Our study shows that despite their similar origins, human cutaneous SCCs and BCCs are considerably different in their TAMs. To our knowledge, these results provide the first evidence of differential TAM density and polarization in SCCs versus BCCs, which may contribute to their characteristic clinical behaviors. Future studies are necessary to elucidate the mechanisms by which TAMs influence these cancers with the goal of developing therapies tailored to each type of malignancy.
Keywords: BCC; Basal cell carcinoma; Cancer research; Cell differentiation; Immune response; Immunology; Lactic acid; Macrophage polarization and density; SCC; Squamous cell carcinoma; TAMs; Tumor-associated macrophages.