Tracking Pseudomonas aeruginosa transmissions due to environmental contamination after discharge in ICUs using mathematical models

PLoS Comput Biol. 2019 Aug 28;15(8):e1006697. doi: 10.1371/journal.pcbi.1006697. eCollection 2019 Aug.

Abstract

Pseudomonas aeruginosa (P. aeruginosa) is an important cause of healthcare-associated infections, particularly in immunocompromised patients. Understanding how this multi-drug resistant pathogen is transmitted within intensive care units (ICUs) is crucial for devising and evaluating successful control strategies. While it is known that moist environments serve as natural reservoirs for P. aeruginosa, there is little quantitative evidence regarding the contribution of environmental contamination to its transmission within ICUs. Previous studies on other nosocomial pathogens rely on deploying specific values for environmental parameters derived from costly and laborious genotyping. Using solely longitudinal surveillance data, we estimated the relative importance of P. aeruginosa transmission routes by exploiting the fact that different routes cause different pattern of fluctuations in the prevalence. We developed a mathematical model including background transmission, cross-transmission and environmental contamination. Patients contribute to a pool of pathogens by shedding bacteria to the environment. Natural decay and cleaning of the environment lead to a reduction of that pool. By assigning the bacterial load shed during an ICU stay to cross-transmission, we were able to disentangle environmental contamination during and after a patient's stay. Based on a data-augmented Markov Chain Monte Carlo method the relative importance of the considered acquisition routes is determined for two ICUs of the University hospital in Besançon (France). We used information about the admission and discharge days, screening days and screening results of the ICU patients. Both background and cross-transmission play a significant role in the transmission process in both ICUs. In contrast, only about 1% of the total transmissions were due to environmental contamination after discharge. Based on longitudinal surveillance data, we conclude that cleaning improvement of the environment after discharge might have only a limited impact regarding the prevention of P.A. infections in the two considered ICUs of the University hospital in Besançon. Our model was developed for P. aeruginosa but can be easily applied to other pathogens as well.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computational Biology
  • Cross Infection / epidemiology
  • Cross Infection / prevention & control
  • Cross Infection / transmission*
  • Disease Reservoirs / microbiology
  • Drug Resistance, Multiple, Bacterial
  • Environmental Microbiology
  • France / epidemiology
  • Humans
  • Intensive Care Units*
  • Longitudinal Studies
  • Markov Chains
  • Models, Biological
  • Monte Carlo Method
  • Patient Discharge
  • Prevalence
  • Pseudomonas Infections / epidemiology
  • Pseudomonas Infections / prevention & control
  • Pseudomonas Infections / transmission*
  • Pseudomonas aeruginosa* / drug effects
  • Pseudomonas aeruginosa* / pathogenicity

Grants and funding

TMP has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115737-2 (Combatting bacterial resistance in Europe - molecules against Gram negative infections [COMBACTE-MAGNET]), resources of which are composed of financial contribution from the European Union Seventh Framework Programme (FP7/2007‐2013) and EFPIA companies in kind contribution. The funders had no role in data collection and analysis, decision to publish, or preparation of the manuscript. (www.imi.europa.eu).