To investigate the anti-tumor activities of lactoferrin, α-lactalbumin, and β-lactoglobulin, 4 types of human tumor cells (lung tumor cell A549, intestinal epithelial tumor cell HT29, hepatocellular cell HepG2, and breast cancer cell MDA231-LM2) were exposed to 3 proteins, respectively. The effects on cell proliferation, migration, and apoptosis were detected in vitro, and nude mice bearing tumors were administered the 3 proteins in vivo. Results showed that the 3 proteins (20 g/L) inhibited viability and migration, as well as induced apoptosis, in 4 tumor cells to different degrees (compared with the control). In vivo, tumor weights in the HT29 group (0.84 ± 0.22 g vs. control 2.05 ± 0.49 g) and MDA231-LM2 group (1.11 ± 0.25 g vs. control 2.49 ± 0.57 g) were significantly reduced by lactoferrin; tumor weights in the A549 group (1.07 ± 0.19 g vs. control 3.11 ± 0.73 g) and HepG2 group (2.32 ± 0.46 g vs. control 3.50 ± 0.74 g) were significantly reduced by α-lactalbumin. Moreover, the roles of lactoferrin, α-lactalbumin, and β-lactoglobulin in regulating apoptotic proteins were validated. In summary, lactoferrin, α-lactalbumin, and β-lactoglobulin were proven to inhibit growth and development of A549, HT29, HepG2, and MDA231-LM2 tumors to different degrees via induction of cell apoptosis.
Keywords: anti-tumor activity; lactoferrin; α-lactalbumin; β-lactoglobulin.
Copyright © 2019 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.