Five tungsten carbide nanoparticle preparations (denoted WC1-WC5) were investigated for broad spectrum virucidal activity against four recommended model viruses. These are modified vaccinia virus Ankara (MVA), human adenovirus type 5 (HAdV-5), poliovirus type 1 (PV-1) and murine norovirus (MNV). All virucidal tests were performed two to five times using the quantitative suspension test, which is a highly standardized test method to evaluate the virucidal efficacy of disinfectants in accordance with the European norm EN 14476+A1 and the German DVV/RKI guidelines. Quantitative detection of viruses was conducted by endpoint titration and quantitative real-time PCR. Results showed that three of the five tested compounds (WC1-WC3) were able to reduce the infectivity of all model viruses by at least four log10 of tissue culture infective dose 50% per ml after 15 min, whereas the other two compounds exhibited only limited efficacy (WC4) or showed cytotoxicity (WC5). Virucidal activity of nanoparticles increased with incubation time and a dose-effect curve showed dependence of virucidal activity with particle concentration. Whereas WC1-WC4 showed little cytotoxicity, WC5 which was doped with copper exhibited a significant cytotoxic effect. These findings propose tungsten carbide nanoparticles to be very promising in terms of new disinfection techniques. SIGNIFICANCE AND IMPACT OF THE STUDY: The present study investigates the virucidal activity of tungsten carbide nanoparticles using the quantitative suspension test in accordance with the European norm EN 14476+A1 and the German DVV/RKI guidelines. Due to highly standardized assay conditions, results of this test are considered very reliable for evaluation of the virucidal activity of disinfectants. Broad-spectrum activity and high efficacy of three different tungsten carbide nanoparticles preparations is concluded.
Keywords: broad spectrum; disinfectant; quantitative suspension test; tungsten carbide; virucidal activity.
© 2019 The Society for Applied Microbiology.