Background: FoxP3 is a marker of human T regulatory cells (Tregs), which are supposed to play an important role in the pathophysiology of atherosclerosis. Interleukin 10 (IL-10) is a cytokine with pleiotropic, immunoregulatory properties, produced mostly by Tregs and B regulatory cells. Due to their anti-inflammatory action, both Tregs and IL-10 are believed to inhibit plaque development and decrease atherosclerosis progression. The effect of hypolipidemic drugs - statins or ezetimibe - on FoxP3-positive Tregs and anti-inflammatory cytokines, such as IL-10, is still unclear.
Objectives: The objective of the study was to investigate the effects of 3 different therapies of equivalent hypolipidemic activity: atorvastatin, rosuvastatin, and combination therapy of atorvastatin and ezetimibe on FoxP3-Tregs transcription factor and IL-10 mRNA expression in peripheral blood mononuclear cells (PBMCs) from patients with stable coronary artery disease (CAD).
Material and methods: Sixty-five patients with diagnosed CAD participated in the study. They were randomly assigned to 3 therapeutic groups: atorvastatin at a dose of 40 mg/day (A40 group); rosuvastatin 20 mg/day (R20 group); and atorvastatin 10 mg/day combined with ezetimibe 10 mg/day (A10+E10 group). After 1 month and 6 months of therapy, the mRNA expression for FoxP3 and IL-10 in PBMCs was evaluated using real-time polymerase chain reaction (RT-PCR) and lipid parameters.
Results: An improvement in lipid parameters was observed in each of the groups studied; however, hypolipidemic treatment did not induce any change in FoxP3 and IL-10 mRNA expression. After 6 months, an increase in FoxP3 mRNA expression was noted in A40 group as compared to R20 group.
Conclusions: None of the therapies of equal hypolipidemic efficacy affected FoxP3 and IL-10 mRNA expression in patients with stable CAD.
Keywords: FOXP3; IL-10; ezetimibe; regulatory T cells; statins.