Thyroid autoregulation has been linked to an organified iodocompound. Since several iodolipids are produced by the gland their possible role in thyroid autoregulation was examined. The following pure synthetic compounds were prepared: 1) 14-iodo-15-hydroxy-5,8,11-eicosatrienoic acid (I-OH-A); 2) its omega lactone (IL-omega); 3) 5-hydroxy-6-iodo-8,11,14-eicosatrienoic acid delta lactone (IL-delta). Their action on iodine metabolism was studied. Iodine uptake was measured in calf thyroid slices. At 10(-4)M I-OH-A caused a 64% decrease in the T/M ratio, while IL-omega inhibited it by 36% and IL-delta was without effect. At 10(-5)M the inhibition was 44% for I-OH-A and 19% for IL-omega, while T3 was without action. A possible isotopic dilution effect was excluded, and no change in iodine efflux was observed. The inhibition by I-OH-A of iodide uptake was observed after only 15 min preincubation. This compound also decreased 125I accumulation in rats. In calf thyroid slices, I-OH-A at 10(-4)M, inhibited PB125I formation by 80%, IL-omega by 62% and IL-delta by 37%. T3 and arachidonic acid were without action. I-OH-A also caused a dose-dependent inhibition of TSH-stimulated iodide organification. The present results demonstrate, for the first time, that iodinated derivatives of arachidonic acid inhibit thyroid function and mimic the effect of iodide on thyroid autoregulation.