Multicellular Tumor Spheroids culture (MCTS) is an in vitro model mimicking the characteristics of the tumor microenvironment, such as hypoxia and acidosis, resulting in the presence of both proliferating and quiescent cell populations. lncRNA's is a novel group of regulatory molecules that participates in the acquisition of tumorigenic phenotypes. In the present work we evaluated the oncogenic association of an uncharacterized lncRNA (lncRNA-HAL) in the tumorigenic phenotype induced by the MCTS microenvironment. We measured lncRNA-HAL expression level in MCF-7-MCTS populations and under different hypoxic conditions by RT-qPCR. Afterwards, we silenced lncRNA-HAL expression by shRNAs and evaluated its effect in MCF-7 transcriptome (by RNAseq) and validated the modified cellular processes by proliferation, migration, and stem cells assays. Finally, we analyzed which proteins interacts with lncRNA-HAL by ChIRP assay, to propose a possible molecular mechanism for this lncRNA. We found that lncRNA-HAL is overexpressed in the internal quiescent populations (p27 positive populations) of MCF-7-MCTS, mainly in the quiescent stem cell population, being hypoxia one of the microenvironmental cues responsible of its overexpression. Transcriptome analysis of lncRNA-HAL knockdown MCF7 cells revealed that lncRNA-HAL effect is associated with proliferation, migration and cell survival mechanisms; moreover, lncRNA-HAL silencing increased cell proliferation and impaired cancer stem cell proportion and function, resulting in decreased tumor grafting in vivo. In addition, we found that this lncRNA was overexpressed in triple-negative breast cancer patients. Analysis by ChIRP assay showed that this nuclear lncRNA binds to histones and hnRNPs suggesting a participation at the chromatin level and transcriptional regulation. The results obtained in the present work suggest that the function of lncRNA-HAL is associated with quiescent stem cell populations, which in turn is relevant due to its implications in cancer cell survival and resistance against treatment in vivo. Altogether, our data highlights a new lncRNA whose expression is regulated by the tumor microenvironment and associated to stemness in breast cancer.
Keywords: Hypoxia; MCTS; Migration; Spheroids; Stem cells; Tumor microenvironment; lncRNAs.
Copyright © 2019 Elsevier B.V. All rights reserved.