A new mouse model of GLUT1 deficiency syndrome exhibits abnormal sleep-wake patterns and alterations of glucose kinetics in the brain

Dis Model Mech. 2019 Sep 12;12(9):dmm038828. doi: 10.1242/dmm.038828.

Abstract

Dysfunction of glucose transporter 1 (GLUT1) proteins causes infantile epilepsy, which is designated as a GLUT1 deficiency syndrome (GLUT1DS; OMIM #606777). Patients with GLUT1DS display varied clinical phenotypes, such as infantile seizures, ataxia, severe mental retardation with learning disabilities, delayed development, hypoglycorrhachia, and other varied symptoms. Glut1Rgsc200 mutant mice mutagenized with N-ethyl-N-nitrosourea (ENU) carry a missense mutation in the Glut1 gene that results in amino acid substitution at the 324th residue of the GLUT1 protein. In this study, these mutants exhibited various phenotypes, including embryonic lethality of homozygotes, a decreased cerebrospinal-fluid glucose value, deficits in contextual learning, a reduction in body size, seizure-like behavior and abnormal electroencephalogram (EEG) patterns. During EEG recording, the abnormality occurred spontaneously, whereas the seizure-like phenotypes were not observed at the same time. In sleep-wake analysis using EEG recording, heterozygotes exhibited a longer duration of wake times and shorter duration of non-rapid eye movement (NREM) sleep time. The shortened period of NREM sleep and prolonged duration of the wake period may resemble the sleep disturbances commonly observed in patients with GLUT1DS and other epilepsy disorders. Interestingly, an in vivo kinetic analysis of glucose utilization by positron emission tomography with 2-deoxy-2-[fluorine-18]fluoro-D-glucose imaging revealed that glucose transportation was reduced, whereas hexokinase activity and glucose metabolism were enhanced. These results indicate that a Glut1Rgsc200 mutant is a useful tool for elucidating the molecular mechanisms of GLUT1DS.This article has an associated First Person interview with the joint first authors of the paper.

Keywords: ENU mutagenesis; Epilepsy; GLUT1DS; Glucose transporter 1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Avoidance Learning
  • Behavior, Animal
  • Body Weight
  • Brain / metabolism*
  • Brain / pathology
  • Carbohydrate Metabolism, Inborn Errors / genetics
  • Carbohydrate Metabolism, Inborn Errors / metabolism*
  • Carbohydrate Metabolism, Inborn Errors / physiopathology*
  • Disease Models, Animal
  • Electroencephalography
  • Embryo Loss / genetics
  • Embryo Loss / pathology
  • Glucose / cerebrospinal fluid
  • Glucose / metabolism*
  • Glucose Transporter Type 1 / genetics
  • Glucose Transporter Type 1 / metabolism
  • Heterozygote
  • Homozygote
  • Kinetics
  • Learning
  • Mice, Mutant Strains
  • Monosaccharide Transport Proteins / deficiency*
  • Monosaccharide Transport Proteins / genetics
  • Monosaccharide Transport Proteins / metabolism
  • Motor Activity
  • Mutation, Missense / genetics
  • Seizures / genetics
  • Seizures / pathology
  • Seizures / physiopathology
  • Sleep / physiology*
  • Transcription, Genetic
  • Wakefulness / physiology*

Substances

  • Glucose Transporter Type 1
  • Monosaccharide Transport Proteins
  • Glucose

Supplementary concepts

  • Glut1 Deficiency Syndrome