Aims: Circular RNAs (circRNAs) are involved in gene regulation in a variety of physiological and pathological processes. The present study aimed to investigate the effect of circRNA_000203 on cardiac hypertrophy and the potential mechanisms involved.
Methods and results: CircRNA_000203 was found to be up-regulated in the myocardium of Ang-II-infused mice and in the cytoplasma of Ang-II-treated neonatal mouse ventricular cardiomyocytes (NMVCs). Enforced expression of circRNA_000203 enhances cell size and expression of atrial natriuretic peptide and β-myosin heavy chain in NMVCs. In vivo, heart function was impaired and cardiac hypertrophy was aggravated in Ang-II-infused myocardium-specific circRNA_000203 transgenic mice (Tg-circ203). Mechanistically, we found that circRNA_000203 could specifically sponge miR-26b-5p, -140-3p in NMVCs. Further, dual-luciferase reporter assay showed that miR-26b-5p, -140-3p could interact with 3'-UTRs of Gata4 gene, and circRNA_000203 could block the above interactions. In addition, Gata4 expression is transcriptionally inhibited by miR-26b-5p, -140-3p mimic in NMVCs but enhanced by over-expression of circRNA_000203 in vitro and in vivo. Functionally, miR-26b-5p, -140-3p, and Gata4 siRNA, could reverse the hypertrophic growth in Ang-II-induced NMVCs, as well as eliminate the pro-hypertrophic effect of circRNA_000203 in NMVCs. Furthermore, we demonstrated that NF-κB signalling mediates the up-regulation of circRNA_000203 in NMVCs exposed to Ang-II treatment.
Conclusions: Our data demonstrated that circRNA_000203 exacerbates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p leading to enhanced Gata4 levels.
Keywords: Cardiac hypertrophy; CircRNA_000203; Circular RNA; MicroRNA-140-3p; MicroRNA-26b-5p.
© The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Cardiology.