The latent viral reservoir is the source of viral rebound after interruption of antiretroviral therapy (ART) and is the major obstacle in eradicating the latent human immunodeficiency virus-1 (HIV-1). In this study, arsenic class of mineral, arsenic trioxide, clinically approved for treating acute promyelocytic leukemia, is demonstrated to reactivate latent provirus in CD4+ T cells from HIV-1 patients and Simian immunodeficiency virus (SIV)-infected macaques, without significant systemic T cell activation and inflammatory responses. In a proof-of-concept study using chronically SIVmac239-infected macaques, arsenic trioxide combined with ART delays viral rebound after ART termination, reduces the integrated SIV DNA copies in CD4+ T cells, and restores CD4+ T cells counts in vivo. Most importantly, half of arsenic trioxide-treated macaques show no detectable viral rebound in the plasma for at least 80 days after ART discontinuation. Mechanistically, the study reveals that CD4 receptors and CCR5 co-receptors of CD4+ T cells are significantly downregulated by arsenic trioxide treatment, which reduces susceptibility to infection after provirus reactivation. Furthermore, an increase in SIV-specific immune responses after arsenic trioxide treatment may contribute to suppression of viral rebound. This work suggests that arsenic trioxide in combination with ART is a novel regimen in down-sizing or even eradicating latent HIV-1 reservoir.
Keywords: Simian immunodeficiency virus (SIV); antiretroviral therapy (ART); arsenic trioxide; functional cures; human immunodeficiency virus‐1 (HIV‐1); latency.