Passive acoustic mapping (PAM) techniques offer a simple means of spatio-temporal cavitation monitoring during therapeutic ultrasound procedures. Implementation with a conventional diagnostic ultrasound system allows natural integration of PAM with B-mode imaging. However, the refracting properties of diagnostic array lenses may introduce PAM image registration errors that could lead to inaccuracies in treatment monitoring and guidance. To address these concerns, this paper presents lens characterization of two different array designs, analytical estimation of lens-induced source mapping errors in simple media, and experimental demonstration and correction of lens effects, reducing the depth-averaged image co-registration errors to no more than 0.52 mm.