Recently, our knowledge of the composition and complexity of tick microbial communities has increased and supports microbial impact on tick biology. Results support a phylogenetic association between ticks and their microbiota across evolution; this is known as phylosymbiosis. Herein, using published datasets, we confirm the existence of phylosymbiosis between Ixodes ticks and their microbial communities. The strong phylosymbiotic signal and the phylogenetic structure of microbial communities associated with Ixodid ticks revealed that phylosymbiosis may be a widespread phenomenon in tick-microbiota evolution. This finding supports the existence of a species-specific tick hologenome with a largely unexplored influence on tick biology and pathogen transmission. These results may provide potential targets for the construction of paratransgenic ticks to control tick infestations and tick-borne diseases.
Keywords: hologenome; metagenomics; microbiota; paratransgenic; phylosymbiosis; tick.
Copyright © 2019 Elsevier Ltd. All rights reserved.