Background: This study aimed to investigate the effects of stromal cell-derived factor-1 (SDF-1) on biphasic ceramic-like biologic bone (BCBB) in vivo on the repair of large segment bone defect in rabbits.
Methods: A large-segment radius defect model of the rabbits was constructed. In the experimental group, BCBB with SDF-1 sustained-release system were implanted into the bone defect site. Other three groups including normal control, autologous bone graft, and BCBB implantation without SDF-1 were set. After surgery, general observation, X-ray radiography and scoring, and tissue section staining were performed at 2, 4, 8, 12, and 24 weeks post-implantation.
Results: By general observation, X-ray radiography and grading and tissue section staining observation, we found that the BCBB carrying SDF-1 was better than those in the group of BCBB without SDF-1 (P < 0.05). BCBB scaffold had certain bone conduction capacity, and the BCBB scaffold carrying SDF-1 had improved bone conduction ability and possessed bone induction ability. In the case of carrying SDF-1, it can be used to repair large bone defects in a shorter time than simply using BCBB, which is equivalent to the effect of autologous bone.
Conclusion: BCBB scaffold carrying SDF-1 can promote the repair effect on a large bone defect, which is equivalent to the effect of autologous bone.
Keywords: Biphasic ceramic-like biological bone; Bone defect; Bone marrow mesenchymal stem cells; Bone tissue engineering; Stromal cell-derived factor-1.