Emodin is a Chinese herb-derived compound that exhibits a variety of pharmacological benefits. Although emodin has been shown to inhibit growth of cancer cells, its antineoplastic function is incompletely understood. CD155 is a member of poliovirus receptor-related (PRR) family of adhesion molecules; it is constitutively expressed on many tumor cell lines and tissues and has diverse functions. CD155 has been reported to mediate activation of T cells via CD226 or inhibition of T cells via T-cell immunoreceptor with Ig and ITIM domains (TIGIT). In addition, CD155 may play a critical role through non-immunological mechanisms in cancer. In this study, we tested the ability of emodin to modulate CD155 expression in cancer cells. We found that emodin significantly decreased the expression of CD155 in tumor cells and inhibited tumor cell proliferation and migration, and induced cell-cycle arrest at G2/M phase. The tumor inhibitory effects of emodin were lost with CD155 knockdown. Furthermore, emodin was used to treat mice bearing B16 melanoma. It was shown that emodin attenuated tumor growth accompanied by suppressing CD155 expression. Therefore, we propose that emodin could inhibit tumor growth, and the antineoplastic properties of emodin are at least partially CD155 dependent. Our study provides new insights into the mechanisms by which emodin inhibits tumor growth.
Keywords: Adhesion molecule; CD155; Emodin; Herb-derived compound; Tumor.
Copyright © 2019 Elsevier B.V. All rights reserved.