Heart failure with preserved ejection fraction (HFpEF) is a complex and heterogeneous clinical syndrome. For the purpose of assisting HFpEF diagnosis, a non-invasive method using extreme learning machine and heart sound (HS) characteristics was provided in this paper. Firstly, the improved wavelet denoising method was used for signal preprocessing. Then, the logistic regression based hidden semi-Markov model algorithm was utilized to locate the boundary of the first HS and the second HS, therefore, the ratio of diastolic to systolic duration can be calculated. Eleven features were extracted based on multifractal detrended fluctuation analysis to analyze the differences of multifractal behavior of HS between healthy people and HFpEF patients. Afterwards, the statistical analysis was implemented on the extracted HS characteristics to generate the diagnostic feature set. Finally, the extreme learning machine was applied for HFpEF identification by the comparison of performances with support vector machine. The result shows an accuracy of 96.32%, a sensitivity of 95.48% and a specificity of 97.10%, which demonstrates the effectiveness of HS for HFpEF diagnosis.
Keywords: Extreme learning machine; Heart failure with preserved ejection fraction; Heart sounds; Multifractal detrended fluctuation analysis.