The heart's response to varying demands of the body is regulated by signaling pathways that activate protein kinases which phosphorylate sarcomeric proteins. Although phosphorylation of cardiac myosin binding protein-C (cMyBP-C) has been recognized as a key regulator of myocardial contractility, little is known about its mechanism of action. Here, we used protein kinase A (PKA) and Cε (PKCε), as well as ribosomal S6 kinase II (RSK2), which have different specificities for cMyBP-C's multiple phosphorylation sites, to show that individual sites are not independent, and that phosphorylation of cMyBP-C is controlled by positive and negative regulatory coupling between those sites. PKA phosphorylation of cMyBP-C's N terminus on 3 conserved serine residues is hierarchical and antagonizes phosphorylation by PKCε, and vice versa. In contrast, RSK2 phosphorylation of cMyBP-C accelerates PKA phosphorylation. We used cMyBP-C's regulatory N-terminal domains in defined phosphorylation states for protein-protein interaction studies with isolated cardiac native thin filaments and the S2 domain of cardiac myosin to show that site-specific phosphorylation of this region of cMyBP-C controls its interaction with both the actin-containing thin and myosin-containing thick filaments. We also used fluorescence probes on the myosin-associated regulatory light chain in the thick filaments and on troponin C in the thin filaments to monitor structural changes in the myofilaments of intact heart muscle cells associated with activation of myocardial contraction by the N-terminal region of cMyBP-C in its different phosphorylation states. Our results suggest that cMyBP-C acts as a sarcomeric integrator of multiple signaling pathways that determines downstream physiological function.
Keywords: cardiac muscle regulation; myosin binding protein-C; phosphorylation.
Copyright © 2019 the Author(s). Published by PNAS.