Physicochemical Properties and Effect of Processing Methods on Mineral Composition and Antinutritional Factors of Improved Chickpea (Cicer arietinum L.) Varieties Grown in Ethiopia

Int J Food Sci. 2019 Jun 2:2019:9614570. doi: 10.1155/2019/9614570. eCollection 2019.

Abstract

Chickpea (Cicer arietinum L.) is an important pulse crop grown and consumed all over the world because it is a good source of carbohydrates and protein. However, presence of antinutritional components restricts its use by interfering with digestion of macronutrients during consumption. Therefore, the objective of this study was to evaluate physicochemical properties and effect of processing methods on antinutritional factors and mineral composition of improved chickpea varieties (Natoli of Desi and Arerti of Kabuli) grown in Ethiopia. The experiment was factorial with complete randomized design. The result indicated that physicochemical properties such as seed mass, seed density, hydration capacity, swelling capacity, unhydrated seeds, and cooking time of Arerti and Natoli chickpeas had 260.69 and 280.65 g/1000 seeds, 3.48 and 3.61g/ml, 1.07 and 1.03 g/g, 2.12 and 1.94ml/g, 1.64 and 14.75%, and 21.00 and 246.33 min, respectively. After processing, Zn, Fe, and Ca contents of improved chickpea varieties had 4.48 to 5.85mg/kg, 8.52 to 10.17mg/kg, and 536.56 to 1035mg/kg, respectively. The antinutritional factors, tannin and phytic acid, in the raw chickpeas were reduced to 25 to 82.25% and 5.89 to 57.35%, respectively. The results of the current study showed that Arerti of Kabuli variety showed low antinutritional factors and better physicochemical properties, specifically low cooking time, than Natoli of Desi variety. All processing methods were effective in reduction of antinutritional factors; however, boiling was found to be the best for reduction of antinutritional factors.