Homocysteine, a non-proteinogenic amino acid but an important metabolic intermediate is generated as an integral component for the "1-carbon metabolism" during normal physiology. It is catabolized to cysteine via the transulfuration pathway resulting in the generation of hydrogen sulfide, a naturally endogenous byproduct. Genetics or metabolic derangement can alter homocysteine concentration leading to hyperhomocysteinemia (HHcy), a physiologically unfavorable condition that causes serious medical conditions including muscle wasting. HHcy environment can derail physiological processes by targeting biomolecules such as Akt; however, not much is known regarding the effects of HHcy on regulation of transcription factors such as forkhead box O (FOXO) proteins. Recently, hydrogen sulfide has been shown to be highly effective in alleviating the effects of HHcy by serving as an antiapoptotic factor, but role of FOXO and its interaction with hydrogen sulfide are yet to be established. In this review, we discuss role(s) of HHcy in skeletal muscle atrophy and how HHcy interact with FOXO and peroxisome proliferator-activated receptor gamma coactivator 1-alpha expressions that are relevant in musculoskeletal atrophy. Further, therapeutic intervention with hydrogen sulfide for harnessing its beneficial effects might help mitigate the dysregulated 1-carbon metabolism that happens to be the hallmark of HHcy-induced pathologies such as muscle atrophy.
Keywords: facteurs de transcription; homocysteine; homocystéine; hydrogen sulfide; metabolism; métabolisme; sulfure d’hydrogène; transcription factors.