Electronic health records (EHR) are valuable to define phenotype selection algorithms used to identify cohorts ofpatients for sequencing or genome wide association studies (GWAS). To date, the electronic medical records and genomics (eMERGE) network institutions have developed and applied such algorithms to identify cohorts with associated DNA samples used to discover new genetic associations. For complex diseases, there are benefits to stratifying cohorts using comorbidities in order to identify their genetic determinants. The objective of this study was to: (a) characterize comorbidities in a range of phenotype-selected cohorts using the Johns Hopkins Adjusted Clinical Groups® (ACG®) System, (b) assess the frequency of important comorbidities in three commonly studied GWAS phenotypes, and (c) compare the comorbidity characterization of cases and controls. Our analysis demonstrates a framework to characterize comorbidities using the ACG system and identified differences in mean chronic condition count among GWAS cases and controls. Thus, we believe there is great potential to use the ACG system to characterize comorbidities among genetic cohorts selected based on EHR phenotypes.