Astrocytic Endocannabinoids Mediate Hippocampal Transient Heterosynaptic Depression

Neurochem Res. 2020 Jan;45(1):100-108. doi: 10.1007/s11064-019-02834-0. Epub 2019 Jun 28.

Abstract

Astrocytes are highly dynamic cells that modulate synaptic transmission within a temporal domain of seconds to minutes in physiological contexts such as Long-Term Potentiation (LTP) and Heterosynaptic Depression (HSD). Recent studies have revealed that astrocytes also modulate a faster form of synaptic activity (milliseconds to seconds) known as Transient Heterosynaptic Depression (tHSD). However, the mechanism underlying astrocytic modulation of tHSD is not fully understood. Are the traditional gliotransmitters ATP or glutamate released via hemichannels/vesicles or are other, yet, unexplored pathways involved? Using various approaches to manipulate astrocytes, including the Krebs cycle inhibitor fluoroacetate, connexin 43/30 double knockout mice (hemichannels), and inositol triphosphate type-2 receptor knockout mice, we confirmed early reports demonstrating that astrocytes are critical for tHSD. We also confirmed the importance of group II metabotropic glutamate receptors (mGluRs) in astrocytic modulation of tHSD using a group II agonist. Using dominant negative SNARE mice, which have disrupted glial vesicle function, we also found that vesicular release of gliotransmitters and activation of adenosine A1 receptors are not required for tHSD. As astrocytes can release lipids upon receptor stimulation, we asked if astrocyte-derived endocannabinoids are involved in tHSD. Interestingly, a cannabinoid receptor 1 (CB1R) antagonist blocked and an inhibitor of the endogenous endocannabinoid 2-arachidonyl glycerol (2-AG) degradation potentiates tHSD in hippocampal slices. Taken together, this study provides the first evidence for group II mGluR-mediated astrocytic endocannabinoids in transiently suppressing presynaptic neurotransmitter release associated with the phenomenon of tHSD.

Keywords: Astrocytes; Endocannabinoids; Transient heterosynaptic depression.

MeSH terms

  • Animals
  • Astrocytes / drug effects
  • Astrocytes / metabolism*
  • Endocannabinoids / antagonists & inhibitors
  • Endocannabinoids / metabolism*
  • Hippocampus / drug effects
  • Hippocampus / metabolism
  • Long-Term Synaptic Depression / drug effects
  • Long-Term Synaptic Depression / physiology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Piperidines / pharmacology
  • Pyrazoles / pharmacology
  • Synapses / drug effects
  • Synapses / metabolism*
  • Synaptic Transmission / drug effects
  • Synaptic Transmission / physiology*

Substances

  • Endocannabinoids
  • Piperidines
  • Pyrazoles
  • AM 251