In this report, comparative investigation of photoluminescence (PL) characteristics of CdS nanobelts (NBs) and nanowires (NWs) is presented. At low temperatures, emissions originate from radiative recombination of free exciton A, neutral donor bound exciton, neutral acceptor bound exciton and surface related exciton (SX) are observed and analyzed through power-dependent and temperature-dependent PL measurements. We found that SX emission takes a predominant role in emissions of CdS nanobelts and nanowires. There is a direct correlation between SX emission intensity and surface-to-volume ratio, which is the SX emission intensity is proportional to the superficial area of the nanostructures. At the same time, we found that the exciton-phonon interaction in the CdS NWs sample is weaker than that of CdS NBs sample. Furthermore, lasing action has been observed in CdS NBs sample at room temperature with lasing threshold of 608.13 mW/cm2. However, there is no lasing emission in CdS NWs sample. This phenomenon can be explained by the side effects (such as thermal effects) from surface deep level transitions caused the lower damage threshold in CdS NWs. Based on the observations and deductions presented here, SX emission significantly impact on the performance of nanostructures for lasing and light-emitting applications.