Purpose: Children with epilepsy in low-income countries often go undiagnosed and untreated. We examine a portable, low-cost smartphone-based EEG technology in a heterogeneous pediatric epilepsy cohort in the West African Republic of Guinea.
Methods: Children with epilepsy were recruited at the Ignace Deen Hospital in Conakry, 2017. Participants underwent sequential EEG recordings with an app-based EEG, the Smartphone Brain Scanner-2 (SBS2) and a standard Xltek EEG. Raw EEG data were transmitted via Bluetooth™ connection to an Android™ tablet and uploaded for remote EEG specialist review and reporting via a new, secure web-based reading platform, crowdEEG. The results were compared to same-visit Xltek 10-20 EEG recordings for identification of epileptiform and non-epileptiform abnormalities.
Results: 97 children meeting the International League Against Epilepsy's definition of epilepsy (49 male; mean age 10.3 years, 29 untreated with an antiepileptic drug; 0 with a prior EEG) were enrolled. Epileptiform discharges were detected on 21 (25.3%) SBS2 and 31 (37.3%) standard EEG recordings. The SBS2 had a sensitivity of 51.6% (95%CI 32.4%, 70.8%) and a specificity of 90.4% (95%CI 81.4%, 94.4%) for all types of epileptiform discharges, with positive and negative predictive values of 76.2% and 75.8% respectively. For generalized discharges, the SBS2 had a sensitivity of 43.5% with a specificity of 96.2%.
Conclusions: The SBS2 has a moderate sensitivity and high specificity for the detection of epileptiform abnormalities in children with epilepsy in this low-income setting. Use of the SBS2+crowdEEG platform permits specialist input for patients with previously poor access to clinical neurophysiology expertise.
Keywords: Africa; EEG; Pediatric epilepsy; mHealth.
Copyright © 2019 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.