Searching for collective behavior in a small brain

Phys Rev E. 2019 May;99(5-1):052418. doi: 10.1103/PhysRevE.99.052418.

Abstract

In large neuronal networks, it is believed that functions emerge through the collective behavior of many interconnected neurons. Recently, the development of experimental techniques that allow simultaneous recording of calcium concentration from a large fraction of all neurons in Caenorhabditis elegans-a nematode with 302 neurons-creates the opportunity to ask whether such emergence is universal, reaching down to even the smallest brains. Here, we measure the activity of 50+ neurons in C. elegans, and analyze the data by building the maximum entropy model that matches the mean activity and pairwise correlations among these neurons. To capture the graded nature of the cells' responses, we assign each cell multiple states. These models, which are equivalent to a family of Potts glasses, successfully predict higher statistical structure in the network. In addition, these models exhibit signatures of collective behavior: the state of single cells can be predicted from the state of the rest of the network; the network, despite being sparse in a way similar to the structural connectome, distributes its response globally when locally perturbed; the distribution over network states has multiple local maxima, as in models of memory; and the parameters that describe the real network are close to a critical surface in this family of models.

MeSH terms

  • Action Potentials
  • Animals
  • Brain / anatomy & histology*
  • Brain / cytology
  • Brain / physiology*
  • Caenorhabditis elegans / anatomy & histology*
  • Caenorhabditis elegans / cytology
  • Caenorhabditis elegans / physiology*
  • Entropy
  • Models, Neurological*
  • Nerve Net / cytology
  • Nerve Net / physiology
  • Neurons / cytology
  • Organ Size