Signaling through CD27 plays a role in T cell activation and memory. However, it is currently unknown how this costimulatory receptor influences CD4+ effector T (Teff) cells in inflamed tissues. In the current study, we used a murine model of inducible self-antigen expression in the epidermis to elucidate the functional role of CD27 on autoreactive Teff cells. Expression of CD27 on Ag-specific Teff cells resulted in enhanced skin inflammation when compared with CD27-deficient Teff cells. CD27 signaling promoted the accumulation of IFN-γ and IL-2-producing T cells in skin draining lymph nodes in a cell-intrinsic fashion. Surprisingly, this costimulatory pathway had minimal effect on early T cell activation and proliferation. Instead, signaling through CD27 resulted in the progressive survival of Teff cells during the autoimmune response. Using BH3 profiling to assess mitochondrial cell priming, we found that CD27-deficient cells were equally as sensitive as CD27-sufficient cells to mitochondrial outer membrane polarization upon exposure to either BH3 activator or sensitizer peptides. In contrast, CD27-deficient Teff cells expressed higher levels of active caspase 8. Taken together, these results suggest that CD27 does not promote Teff cell survival by increasing expression of antiapoptotic BCL2 family members but instead acts by preferentially suppressing the cell-extrinsic apoptosis pathway, highlighting a previously unidentified role for CD27 in augmenting autoreactive Teff cell responses.
Copyright © 2019 by The American Association of Immunologists, Inc.