By limited proteolysis of a type kappa immunoglobulin light chain (Oku) with clostripain, both the VL and CL fragments were obtained with a high yield. The unfolding and refolding by guanidine hydrochloride of light chain Oku and its VL and CL fragments were studied at pH 7.5 and 25 degrees C with circular dichroism and tryptophyl fluorescence. The concentration of guanidine hydrochloride at the midpoint of the unfolding curve was 1.2 M for the VL fragment and 0.9 M for the CL fragment. As in the case of the CL fragment of light chain Nag (type lambda) [Goto, Y., & Hamaguchi, K. (1982) J. Mol. Biol. 156, 891-910], the unfolding and refolding kinetics of the CL fragment could be explained in principle on the basis of the three-species mechanism U1 in equilibrium U2 in equilibrium N, where N is native protein and U1 and U2 are the slow-folding and fast-folding species, respectively, of unfolded protein. The unfolding and refolding kinetics of the VL(Oku) fragment were described by a single exponential term. Double-jump experiments, however, showed that two forms of the unfolding molecule exist. The equilibrium and kinetics of unfolding of light chain Oku were explained by the sum of those of the VL and CL fragments. On the other hand, the refolding kinetics of light chain Oku were greatly different from the sum of those of the VL and CL fragments.(ABSTRACT TRUNCATED AT 250 WORDS)