The wetting process of a high energy surface can be accelerated locally through the capillary interaction of a liquid advancing front with a micro-object introduced to the surface (Mu et al., J. Fluid Mech, 2017, 830, R1). We demonstrate that a linear array of micropillars embedded in a fully wettable substrate can produce quick propagation of liquid along the array. It is observed that multiple interactions of a liquid front with pillars can induce the motion of liquid a hundred times faster than in the absence of pillars.