Amadori compound modified lipids are the result of nonenzymatic glycation and play an important role in several physiological and pathological processes. However, glycation of phosphatidylethanolamine (PE), the most abundant amine-containing lipid in blood plasma, is underexplored and so far only a few glycated PEs have been reported. Herein, we report comprehensive profiling of Amadori-PE and -LysoPE species in human plasma. Using synthetic standards, we first optimized the enrichment procedure for extracting Amadori-PE/LysoPE from plasma. On the basis of the characteristic neutral losses of 303 Da in positive and 162 Da in negative ionization mode, we then applied neural loss scanning-liquid chromatography tandem mass spectrometry (LC-NLS-MS) to identify potentially glycated PE and LysoPE, which was followed by targeted product ion scanning (LC-PIS-MS) to confidently confirm the fatty acyl substitutions of the modified lipids. A total of 20 Amadori-LysoPE and 62 Amadori-PE species, including diacyl, plasmanyl, and plasmenyl, were identified. Among them, the concentrations of 12 Amarodi-LysoPE and 54 Amadori-PE were also quantified in native human plasma, using stable isotope labeled Amadori lipids as internal standards.