Transplantation of Mature Photoreceptors in Rodents With Retinal Degeneration

Transl Vis Sci Technol. 2019 May 30;8(3):30. doi: 10.1167/tvst.8.3.30. eCollection 2019 May.

Abstract

Purpose: To demonstrate survival and integration of mature photoreceptors transplanted with the retinal pigment epithelium (RPE).

Methods: Full-thickness retina with attached RPE was harvested from healthy adult rats. Grafts were implanted into two rat models of retinal degeneration, Royal College of Surgeons (RCS) and S334ter-3. Survival of the host and transplanted retina was monitored using optical coherence tomography (OCT) for up to 6 months. The retinal structure and synaptogenesis between the host and transplant was assessed by histology and immunohistochemistry.

Results: OCT and histology demonstrated a well-preserved photoreceptor layer with inner and outer segments, while the inner retinal layers of the transplant largely disappeared. Grafts, including RPE, survived better than without and the transplanted RPE appeared as a monolayer integrated with the native one. Synaptogenesis was observed through sprouting of new dendrites from the host bipolar cells and synaptic connections forming with cells of the transplant. However, in many samples, a glial fibrillary acidic protein-positive membrane separated the host retina and the graft.

Conclusions: Presence of RPE in the graft improved the survival of transplanted photoreceptors. Functional integration between the transplant and the host retina is likely to be further enhanced if formation of a glial seal could be prevented. Transplantation of the mature photoreceptors with RPE may be a practical approach to restoration of sight in retinal degeneration.

Translational relevance: This approach to restoration of sight in patients with photoreceptor degeneration can be rapidly advanced to clinical testing. In patients with central scotoma, autologous transplantation of the peripheral retina can be an option.

Keywords: RPE transplantation; photoreceptor transplantation; retinal degeneration.