Supported single-atom catalysts have been emerging as promising materials in a variety of energy catalysis applications. However, studying the role of metal-support interactions at the molecular level remains a major challenge, primarily due to the lack of precise atomic structures. In this work, by replacing the frequently used TiO2 support with its molecular analogue, titanium-oxo cluster (TOC), we successfully produced a new kind of Ti-O material doped with single silver sites. The as-obtained Ag10 Ti28 cluster, containing four exposed and six embedded Ag sites, is the largest noble-metal-doped Ti-O cluster reported to date. Density functional theory (DFT) calculations show that the Ag10 Ti28 core exhibits properties distinct from those of metallic Ag-based materials. This Ti-O material doped with single Ag sites presents a high ϵd and moderate CO binding capacity comparable to that of metallic Cu-based catalysts, suggesting that it might display different catalytic performance from the common Ag-based catalysts, for example, for CO2 reduction. These results prove that the synergism of active surface metal atoms and the Ti-O cluster support result in unique physical properties, which might open a new direction for single-atom-included catalysts.
Keywords: atom-cluster catalysts; cluster compounds; metal-support interactions; silver; titanium-oxo clusters.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.