This research examines how the operating expenditures of America's state park systems will be affected by a continued growth in attendance consistent with observed trends as well as potential climate futures. We construct a longitudinal panel dataset (1984-2017) describing the operations and characteristics of all 50 state park systems. These data are analyzed with a time-varying stochastic frontier model. Estimates from the model are used to forecast operating expenditures to midcentury under four different scenarios. The first scenario assumes annual attendance within each state park system will continue to grow (or decline) at the same average annual rate that it has over the period of observation. The subsequent scenarios assume statewide annual mean temperatures will increase following the RCP2.6, RCP4.5, and RCP8.5 greenhouse gas emissions trajectories. Operating expenditures under a scenario where annual growth in attendance stays consistent with observed trends are forecasted to increase 756% by midcentury; this is an order of magnitude larger than projected expenditures under any of the climate scenarios. The future climate change scenarios yielded increases in operating expenditures between 25% (RCP2.6) and 61% (RCP8.5) by 2050. Attendance is the single largest factor affecting the operations of America's state park systems, dwarfing the influence of climate change, which is significant and nontrivial. The future of America's state park systems will depend upon increased support from state legislatures, as well as management actions that generate funds for the maintenance of existing infrastructure and facilities, and the provisioning of services.
Keywords: climate change; outdoor recreation; public lands; stochastic frontier.
Copyright © 2019 the Author(s). Published by PNAS.