Including additives in the culture media during bacterial cellulose (BC) biosynthesis is a traditional method to produce BC-based nanocomposites. This study examines a novel fermentation process, which is to co-culture Gluconacetobacter hansenii (G. hansenii) with Escherichia coli (E. coli) under static conditions, to produce BC pellicles with enhanced mechanical properties. The mannose-rich exopolysaccharides (EPS) synthesized by E. coli were incorporated into the BC network and affected the aggregation of co-crystallized microfibrils without significantly changing the crystal sizes of BC. When co-culturing G. hansenii ATCC 23769 with E. coli ATCC 700728, which produced a low concentration of EPS at 3.3 ± 0.7 mg/L, the BC pellicles exhibited a Young's modulus of 4,874 ± 1144 MPa and a stress at break of 80.7 ± 21.1 MPa, which are 81.9% and 79.3% higher than those of pure BC, respectively. The growth dynamics of the two co-cultured strains suggested that the production of BC and EPS were enhanced through co-culturing fermentation.
Keywords: Bacterial cellulose; Co-culture; Escherichia coli; Exopolysaccharides.
Copyright © 2019. Published by Elsevier Ltd.