Dengue virus (DENV) infection is a worldwide public health threat. To date, the knowledge about the pathogenesis and progression of DENV infection is still limited. Combining global profiling based on proteomic analysis together with functional verification analysis is a powerful strategy to investigate the interplay between the virus and host cells. In the present study, quantitative proteomics has been applied to evaluate host responses (as indicated by altered proteins and modifications) in human cells (using K562 cell line) upon DENV-2 infection, as DENV-2 spreads most widely among all DENV serotypes. Comparative analysis was performed to define differentially expressed proteins in the infected cells compared to the mock-control, and it revealed critical pathogen-induced changes covering a broad spectrum of host cellular compartments and processes. We also discovered more dramatic changes (> 20%, 160 regulated phosphoproteins) in protein phosphorylation compared to protein expression (14%, 321 regulated proteins). Most of these proteins/phosphoproteins were involved in transcription regulation, RNA splicing and processing, immune system, cellular response to stimulus, and macromolecule biosynthesis. Western blot analysis was also performed to confirm the proteomic data. Potential roles of these altered proteins were discussed. The present study provides valuable large-scale protein-related information for elucidating the functional emphasis of host cell proteins and their post-translational modifications in virus infection, and also provides insight and protein evidence for understanding the general pathogenesis and pathology of DENV.
Keywords: Dengue virus (DENV); Protein expression; Protein phosphorylation; Quantitative proteomics; Virus-host interaction.