Plant-plant interactions are important drivers of ecosystem structure and function, yet predicting interaction outcomes across environmental gradients remains challenging. Understanding how interactions are affected by ontogenetic shifts in plant characteristics can provide insight into the drivers of interactions and improve our ability to anticipate ecosystem responses to environmental change. We developed a conceptual framework of nurse shrub facilitation of tree establishment. We used a combination of field experiments and environmental measurements to test the framework with a shrub (Artemisia tridentata) and a tree (Pinus monophylla), two foundation species in a semiarid environment. Shrub microsites allowed trees to overcome an early population bottleneck and successfully establish in areas without tree cover. Shrubs facilitated trees at multiple ontogenetic stages, but the net outcome of the interaction shifted from strongly positive to neutral after the transition of P. monophylla from juvenile to adult foliage. Microhabitat conditions varied across a broad elevational gradient, but interaction outcomes were not strongly related to elevation. Favorable microsites provided by A. tridentata cover are crucial for P. monophylla recovery after stand-replacing disturbance. Models of vegetation response to rapid global environmental change should incorporate the critically important role of nurse shrub interactions for ameliorating population bottlenecks in tree establishment.
Keywords: Artemisia tridentata (big sagebrush); Pinus monophylla (singleleaf pinyon pine); environmental gradient; facilitation; ontogenetic shift; plant-plant interactions.
© No claim to US Government works New Phytologist © 2019 New Phytologist Trust.