Microtubules play essential roles in cellular organization, cargo transport, and chromosome segregation during cell division. During mitosis microtubules form a macromolecular structure known as the mitotic spindle that is responsible for the accurate segregation of chromosomes between the two daughter cells. This is accomplished thanks to finely tuned control of microtubule dynamics. Even small changes in microtubule dynamics during spindle formation and/or operation may lead to chromosome mis-segregation, chromosome instability and aneuploidy. These three events are directly correlated with human diseases like cancer and developmental defects. Precise measurements of microtubule dynamics in the spindle will allow us to discover new molecules involved in regulating microtubule dynamics and enable a deeper understanding of the mechanisms that underlie mitosis and cancer emergence and development. Moreover, many chemotherapeutic agents for cancer treatment are targeted to microtubules, so continued investigation of their dynamics with utmost precision will facilitate the development of new drugs. Measuring microtubule dynamics in the spindle has been a difficult task until recently. With the development of new and gentler microscopic techniques, and new computer programs, we can perform better and more accurate measurements of microtubule dynamics during mitosis.
Copyright © 2019 Elsevier Ltd. All rights reserved.