Calcium-binding nanoparticles for vascular disease

Regen Eng Transl Med. 2019 Mar;5(1):74-85. Epub 2018 Oct 23.

Abstract

Cardiovascular disease (CVD) including atherosclerosis is the leading cause of death worldwide. As CVDs and atherosclerosis develop, plaques begin to form in the blood vessels and become calcified. Calcification within the vasculature and atherosclerotic plaques have been correlated with rupture and consequently, acute myocardial infarction. However, current imaging methods to identify vascular calcification have limitations in determining plaque composition and structure. Nanoparticles can overcome these limitations due to their versatility and ability to incorporate a wide range of targeting and contrast agents. In this review, we summarize the current understanding of calcification in atherosclerosis, their role in instigating plaque instability, and clinical methodologies to detect and analyze vascular calcification. In addition, we highlight the potential of calcium-targeting ligands and nanoparticles to create novel calcium-detecting tools.

Keywords: Cardiovascular disease; Drug delivery; Imaging; Nanoparticle; Peptides; Vascular calcification.