Background: The oligosaccharide galactose-α-1,3-galactose (α-Gal), present in mammalian proteins and lipids, causes an unusual delayed allergic reaction 3 to 6 hours after ingestion of mammalian meat in individuals with IgE antibodies against α-Gal. To better understand the delayed onset of allergic symptoms and investigate whether protein-bound or lipid-bound α-Gal causes these symptoms, we analyzed the capacity of α-Gal conjugated proteins and lipids to cross a monolayer of intestinal cells.
Methods: Extracts of proteins and lipids from beef were prepared, subjected to in vitro digestions, and added to Caco-2 cells grown on permeable supports. The presence of α-Gal in the basolateral medium was investigated by immunoblotting, thin-layer chromatography with immunostaining and ELISA, and its allergenic activity was analyzed in a basophil activation test.
Results: After addition of beef proteins to the apical side of Caco-2 cells, α-Gal containing peptides were not detected in the basolateral medium. Those peptides that crossed the Caco-2 monolayer did not activate basophils from an α-Gal allergic patient. Instead, when Caco-2 cells were incubated with lipids extracted from beef, α-Gal was detected in the basolateral medium. Furthermore, these α-Gal lipids were able to activate the basophils of an α-Gal allergic patient in a dose-dependent manner.
Conclusion: Only α-Gal bound to lipids, but not to proteins, is able to cross the intestinal monolayer and trigger an allergic reaction. This suggests that the slower digestion and absorption of lipids might be responsible for the unusual delayed allergic reactions in α-Gal allergic patients and identifies glycolipids as potential allergenic molecules.
Keywords: chylomicron; delayed allergic reaction; glycolipid; glycoprotein; red meat allergy; α-Gal.
© 2019 The Authors. Allergy Published by John Wiley & Sons Ltd.