A growing world population requires an increase in the quality and quantity of food production. However, field losses due to biotic stresses are currently estimated to be between 10 and 20% worldwide. The risk of resistance and strict pesticide legislation necessitate innovative agronomical practices to adequately protect crops in the future, such as the identification of new substances with novel modes of action. In the present study, liquid chromatography mass spectrometry was used to characterize Rheum rhabarbarum root extracts that were primarily composed of the stilbenes rhaponticin, desoxyrhaponticin, and resveratrol. Minor components were the flavonoids catechin, epicatechin gallate, and procyanidin B1. Specific polyphenolic mixtures inhibited mycelial growth of several phytopathogenic fungi and oomycetes. Foliar spray applications with fractions containing stilbenes and flavonoids inhibited spore germination of powdery mildew in Hordeum vulgare with indications of synergistic interactions. Formulated extracts led to a significant reduction in the incidence of brown rust in Triticum aestivum under field conditions. Arabidopsis thaliana mutant and quantitative reverse-transcription polymerase chain reaction studies suggested that the stilbenes induce salicylic acid-mediated resistance. Thus, the identified substances of Rheum roots represent an excellent source of antifungal agents that can be used in horticulture and agriculture.
Keywords: antifungal compound; cereals and grains; cultural and biological practices; disease management; flavonoid; phytopathogenic fungi; plant defense; powdery mildew; salicylic acid; stilbene.