In-vitro Evaluation of Antioxidant and Antibacterial Potential of GreenSynthesized Silver Nanoparticles Using Prosopis farcta Fruit Extract

Iran J Pharm Res. 2019 Winter;18(1):430-455.

Abstract

Nowadays, green synthesis of metal nanoparticles has become a promising synthetic strategy in nanotechnology and materials sciences. In this research, biosynthesis of silver nanoparticles (AgNPs) was successfully accomplished in the presence of Prosopis farcta fruit extract as a reducing agent. Proceeding of the reaction was assessed by using UV-vis spectroscopy. Characterization of silver nanoparticles was carried out by X-ray Diffraction spectroscopy (XRD) and transmission electron microscopy (TEM). The influence of process variables such as temperature, reaction time, and extract concentration was also investigated to optimize the biosynthesis of silver nanoparticles. The average size of synthesized AgNPs was 12.68 nm (10.26-14.65 nm). Furthermore, fruit extract and AgNPs were evaluated for total phenolic and flavonoid contents and were subjected to determine their antiradical scavenging activity using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assay and antimicrobial activity against Staphylococcus aureus, Streptococcus pneumonia, Escherichia, Salmonella typhi using the disk diffusion method. The total phenols and flavonoids in AgNPs-containing plant extract were 462.69 (mg GAE/g extract) and 386.94 (mg QE/g extract) respectively, which were significantly higher than fruit extract. Biosynthesized AgNPs showed a higher antioxidant and antibacterial activity compared to P. farcta fruit extract alone. It could be concluded that P. farcta fruit extract can be extensively used in the production of potential antioxidant and antibacterial AgNPs for biomedical application.

Keywords: Antibacterial properties; Antioxidant activity; Prosopis farcta; Silver nanoparticles.