Advances in molecular genetic sequencing techniques have contributed to the elucidation of previously unknown germline mutations responsible for inherited thrombocytopenia (IT). Regardless of age of presentation and severity of symptoms related to thrombocytopenia and/or platelet dysfunction, a subset of patients with IT are at increased risk of developing myeloid neoplasms during their life time, particularly those with germline autosomal dominant mutations in RUNX1, ANKRD26, and ETV6. Patients may present with isolated thrombocytopenia and megakaryocytic dysmorphia or atypia on baseline bone marrow evaluation, without constituting myelodysplasia (MDS). Bone marrow features may overlap with idiopathic thrombocytopenic purpura (ITP) or sporadic MDS leading to misdiagnosis. Progression to myelodysplastic syndrome/ acute myeloid leukemia (MDS/AML) may be accompanied by progressive bi- or pancytopenia, multilineage dysplasia, increased blasts, cytogenetic abnormalities, acquisition of bi-allelic mutations in the underlying gene with germline mutation, or additional somatic mutations in genes associated with myeloid malignancy. A subset of patients may present with MDS/AML at a young age, underscoring the growing concern for evaluating young patients with MDS/AML for germline mutations predisposing to myeloid neoplasm. Early recognition of germline mutation and predisposition to myeloid malignancy permits appropriate treatment, adequate monitoring for disease progression, proper donor selection for hematopoietic stem cell transplantation, as well as genetic counseling of the affected patients and their family members. Herein, we describe the clinical and diagnostic features of IT with germline mutations predisposing to myeloid neoplasms focusing on mutations involving RUNX1, ANKRD26, and ETV6.
Keywords: ANKRD26; ETV6; RUNX1; inherited thrombocytopenia; myelodysplasia.
© 2019 John Wiley & Sons Ltd.