Background: Intrauterine growth restriction (IUGR) is manifested by decreased growth rate of fetus than its normal genetic growth potential. Global DNA methylation is a crucial investigation for identification of epigenetic changes. Epigenetic change regulates Gene transcription, maintenance of genomic stability, and telomere length.Objectives: To investigate whether the global DNA methylation and telomere length are useful for identifying intrauterine growth restriction.Methods: This cohort study was conducted in the Neonatology Department of JIPMER during the period of November 2016 to December 2017. Forty (40) IUGR and forty (40) AGA neonates were recruited. Umbilical cord blood samples were collected at birth. DNA has been separated from the blood samples and using 5-mC DNA ELISA method, the percentage of genomic DNA methylated in these neonates was established. Telomere length (T/S ratio) was measured by using quantitative real time PCR. Data were expressed as a mean ± standard deviation.Results: Genomic DNA methylation varied significantly between IUGR and AGA neonates (IUGR: 3.12 ± 1.24; AGA: 4.40 ± 2.03; p: < .01). There was significant DNA hypo methylation in IUGR neonates. However, telomere length (T/S ratio) was (IUGR: 1.25 ± 0.13; AGA: 1.26 ± 0.22; p: 0.228 (NS)) similar in both groups.Conclusion: Although there is no significant difference in telomere length between IUGR and AGA neonates, global DNA methylation of 3.45 would identify IUGR with a sensitivity and specificity of 69 and 65% respectively.
Keywords: Cord blood; DNA methylation; intrauterine growth restriction; telomere length.