A Nickel(II) Nitrite Based Molecular Perovskite Ferroelectric

Angew Chem Int Ed Engl. 2019 Jun 24;58(26):8857-8861. doi: 10.1002/anie.201904305. Epub 2019 May 24.

Abstract

The X-site ion in organic-inorganic hybrid ABX3 perovskites (OHPs) varies from halide ion to bridging linkers like HCOO- , N3 - , NO2 - , and CN- . However, no nitrite-based OHP ferroelectrics have been reported so far. Now, based on non-ferroelectric [(CH3 )4 N][Ni(NO2 )3 ], through the combined methodologies of quasi-spherical shape, hydrogen bonding functionality, and H/F substitution, we have successfully synthesized an OHP ferroelectric, [FMeTP][Ni(NO2 )3 ] (FMeTP=N-fluoromethyl tropine). As an unprecedented nitrite-based OHP ferroelectric, the well-designed [FMeTP][Ni(NO2 )3 ] undergoes the ferroelectric phase transition at 400 K with an Aizu notation of 6/mmmFm, showing multiaxial ferroelectric characteristics. This work is a great step towards not only enriching the molecular ferroelectric families but also accelerating the potential practical applications.

Keywords: chemical design; molecular ferroelectrics; nitrite; organic-inorganic hybrid perovskites; piezoresponse force microscopy.