Clustered regularly interspaced short palindromic repeats (CRISPR) loci and their associated (cas) genes provide protection against invading phages and plasmids in prokaryotes. Typically, short sequences are captured from the genome of the invader, integrated into the CRISPR locus, and transcribed into short RNAs that direct RNA-guided Cas nucleases to the nucleic acids of the invader for their degradation. Recent work in the field has revealed unexpected features of the CRISPR-Cas mechanism: (i) collateral, nonspecific, cleavage of host nucleic acids; (ii) secondary messengers that amplify the immune response; and (iii) immunosuppression of CRISPR targeting by phage-encoded inhibitors. Here, we review these new and exciting findings.
Copyright © 2019 Elsevier Ltd. All rights reserved.